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Agriculture

• A large proportion of the mitigation potential of agriculture 
(excluding bioenergy) arises from soil C sequestration, which 
has strong synergies with sustainable agriculture and 
generally reduces vulnerability to climate change.

• Agricultural practices collectively can make a significant 
contribution at low cost 
– By increasing soil carbon sinks, 
– By reducing GHG emissions, 
– By contributing biomass feedstocks for energy use 

• There is no universally applicable list of mitigation practices;
practices need to be evaluated for individual agricultural 
systems and settings IPCC Fourth Assessment Report, Working Group III



Agricultural management plays a major role in 
greenhouse gas emissions and offers many 

opportunities for mitigation
• Cropland

– Reduced tillage

– Rotations
– Cover crops

– Fertility management

– Erosion control

– Irrigation management

No-till seeding in USA

• Grasslands
– Grazing management

– Fire management
– Fertilization
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Soil C Sequestration with conversion to No-tillage

Site Crop MT C ha-1 y-1 (Mt CO2/a/y)

CO & KS Wheat 0-0.30 0-0.45

Kansas Sorghum 0.088 – 0.605 0.13-0.90

KS, MI, OH Maize 0.300 – 0.80 0.45-1.18

Kansas Soybean <0-0.128 0-0.19

Brazil 0.51-1.84 0.75-2.72

Global 0.57 0.84

Kansas CRP 0.800 1.18



Carbon sequestration rate over 29y 
(Fabrizzi and Rice 2008)

Treatment C sequestration Rate  (Mg C/ha/y)

No-till 0.384

Reduced-till 0.346

Tilled 0.269

Soybean 0.066

Sorghum 0.292

Wheat 0.487
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Bars of the same color for a given PLFA biomarker are not different (p<0.10). 
Lines are ± 1 standard error.

Microbial community - Phospholipid fatty acid levels (0-5 cm depth)
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• Fungal Role (18:2w6 
biomarker)

• Significant tillage X residue 
interaction (p<0.05)
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Frey et al. (1999) found greater fungal networks 
optically in NT as compared to CT for the same 
soil. White and Rice, 2007
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Soil 
Aggregation 

Aggregate Size Class

MacroaggregatesMicroaggregates
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Macroaggregates & Slowly
Available C & N
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Carbon Stocks and Depth



Soil C stocks after 18 years
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Soil C sequestration rates for 15 years
(Mg C/ha/y)

Depth Fertilizer N
Tilled

Fertilizer N
No-till

Manure N
Tilled

Manure N
No-till

cm

0-5 0.161 0.351 0.393 1.182

0-15 0.254 0.497 0.792 1.402

0-30 0.336 0.717 0.839 1.387

0-60 0.146 1.325 0.733 1.141

24

NT > Tilled
What is baseline?
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Net effect of NT for 15 years
NT (0-15y) –Till (0-15y)

Depth No N
0.5 

Fertilizer N Fertilizer N
0.5 

Manure N Manure N

cm Mg/ha/y

0-5 0.187 0.450 0.190 0.468 0.789

0-15 0.182 0.371 0.243 0.402 0.610

0-30 0.174 0.311 0.381 0.417 0.548

0-60 -0.443 -0.191 1.179 0.961 0.408

26
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Relative Yield, Economic, and Sequestration Characteristics 
for adopting NT continuous Corn, NE Kansas

NT

Mean Yield (bu/a) 86 CT 87.7

∆Net Return ($/a) 26.50

∆ Soil Carbon (tons/a/y) 0.465

∆ Total C Emissions (tons/a/y) -0.0087 

∆ Net Carbon (tons/a/y) 0.481

Soil C Value ($/a/y) $4.00 value $2.76

10% additional income
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Illustrative Ranking of Carbon as a Crop in U.S. 
Per Proposed GHG Limits in 

Senate Bill 280 (Lieberman-McCain) 1/12/07
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[Crop Source:  USDA - National Agricultural Statistics Service – US Crop 
Rankings - 1997 Production Year Ranking Based on Value of Production]
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So What is the Potential?So What is the Potential?
• Globally

– It is estimated that  soil has the potential to offset  30% of 
the annual CO2 emissions

• United States
– It is estimated that  soil has the potential to offset  15% of 

the annual CO2 emissions
– Additional options for N2O and CH4

• The economic potential is ~30-50% of that value

• Globally
– It is estimated that  soil has the potential to offset  30% of 

the annual CO2 emissions

• United States
– It is estimated that  soil has the potential to offset  15% of 

the annual CO2 emissions
– Additional options for N2O and CH4

• The economic potential is ~30-50% of that value



Measurement, Monitoring and Verification

� Detecting soil C changes
– Difficult on short time scales
– Amount changing small compared to total C

� Methods for detecting and projecting soil C changes (Post et al. 2001)

– Direct methods
• Field measurements

– Indirect methods
• Accounting

–Stratified accounting
–Remote sensing
–Models

Root C

Litter
C

Eroded C

Cropland C

Wetland C

Eddy flux
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C
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Soil organic C

Soil inorganic C

Simulation modelsDatabases / GIS

SOCt = SOC0 + Cc + Cb - Ch - Cr - Ce

Post et al. (2001)



SummarySummary
•• Soil C sequestrationSoil C sequestration

–– Available technology at low costAvailable technology at low cost
–– Significant impact on emissions:  Significant impact on emissions:  ““Bridge to the FutureBridge to the Future””
–– Need advancement in MMV to account for variabilityNeed advancement in MMV to account for variability

•• Agricultural soil C sequestrationAgricultural soil C sequestration
–– Keeps land in production thus providing food security Keeps land in production thus providing food security 

and rural economic development (no leakage)and rural economic development (no leakage)
–– Improves soil qualityImproves soil quality
–– In many cases increases profitability for the farmerIn many cases increases profitability for the farmer
–– Provides other environmental benefits to societyProvides other environmental benefits to society

•• Water quality (less runoff, less erosion)Water quality (less runoff, less erosion)
•• Flood controlFlood control
•• Wildlife habitatWildlife habitat

–– May help adapt to climate change as well as mitigateMay help adapt to climate change as well as mitigate

•• Therefore a WinTherefore a Win--Win SituationWin Situation



• Websites
www.soilcarboncenter.k-state.edu/

www.casmgs.colostate.edu/
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