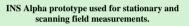
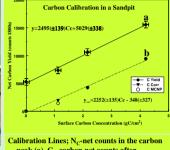
Non-Destructive Field Scanning for Belowground Carbon Using an INS System

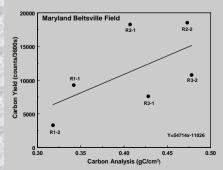

L. Wielopolski¹, S. Mitra¹, C Izaurralde², J. Reeves³, C. Rice⁴, R. Harris⁵, M.H. Ebinger⁵ ¹Brookhaven National Laboratory, Environmental Sciences Department Upton, NY 11973, ²Joint Global Change Research Inst., College Park, MD 20740

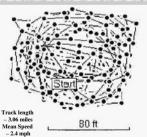
³USDA Environmental Management & Byproduct Utilization Laboratory, Building 306 BARC East, Beltsville, MN 20705


⁴KSU, Dept of Agronomy, 2701 Throckmorton Hall, Manhattan, KS 66506-5501 ⁵Los Alamos National Laboratory, PO Box 1663, MS J495, Los Alamos, NM 87545,

Sandpits, 1.5x1.2x0.46 m³, for synthetic soil preparations.

peak (a), C_N-carbon net counts after interference correction (b). Interference Correction $C_N = N_C - Cascade - SEF$




Carbon Yield for 1800 s in Alabama Soil Bin

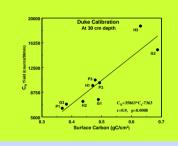
	Counts	Counts	In SD
Hiwassee Clay (V ₁)	3830	4676	5.10 _{n-1}
Vaiden Silty Clay (2V1)	8775	5986	-1.4σ _{n-1}
Hiwassee Sandy Loam (Random V)	3447	2403	-1.00 _{n-1}

Maryland corn field and GPS trace of a scan, in addition three static measurements in the field were taken.

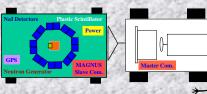
Field Predition by Three Methods

			2
Dry	0.407	13.5%	2
Combustion			9
LECO			5
LIBS	0.327	25%	17
INS	0.257	19%	
			6
			AND DEC MAN

Summary of the INS System:


- INS system is totally non destructive.
- INS system can perform static and scanning measurements
- INS measures large volumes and large areas.
 INS enables sequential measurements.
- Integration into US Geological surveys for large scale regional
- soil carbon mapping. Integration into US Geological surveys for large scale regional soil carbon mapping.
- Monitoring large area disturbances

Measurement sites at Duke Forest NC. Pits 40x40x40 cm3 were excavated for C analysis.


Duke Forest calibration, the three sites; G-Grass, P-Pine, and H-Hardwood were combined. The sits were covered with standing water and the solid fraction approached 30%.

Montana wheat field and GPS trace of a scan, in addition three static measurements in the field were taken.

Beta prototype to be deployed in summer 2007