Enhanced Forage Production Resulting from Rising Atmospheric Carbon Dioxide May Not Be Good News for Rangelands

J.A. Morgan¹, D.G. Milchunas², E. Pendall³, W.J. Parton², and J.D. Derner¹ ¹USDA-Agricultural Research Service, Ft. Collins, CO & Cheyenne, WY; ²Colorado State University, Ft. Collins, CO; ³University of Wyoming, Laramie, WY Semi-Arid Grassland Responses to Rising Atmospheric CO₂

- Increased NPP, inversely proportional to available soil water
- Decline in aboveground shoot [N]
- Lower forage digestibility
- Species shifts
 - > Stipa comata (C₃ perennial grass); Artemisia frigida (C₃ sub-shrub)
 - < Bouteloua gracilis (C₄ perennial grass)

CO₂ Increases NPP; Plant Community Less Useful for Livestock Grazing

AGB enhanced > 40% Primarily *S. comata* Decline in N and digestibility Sub-shrub (*Artemisia frigida*) only functional group (C_3 , C_4 , forbs) to expand under elevated CO_2 .