THE ECONOMICS OF CELLULOSIC ETHANOL

2007

Mike Woolverton
Kansas State University
mikewool@agecon.ksu.edu

> Renewable Fuel Production Drivers
> 1. Energy Security
2. High Cost of Transportation Fuel
3. Post-peak Oil Shift to Alternative Energy

```
The Economic Importance of Energy
Agrarian Era:
Gross Domestic Product = f(Land)
Industrial Era:
Gross Domestic Product =
    f(Land, Labor, Capital, Entrepreneurship)
Service Era:
Gross Domestic Product =
    f(Energy, Intellectual Capital, Money,
    Entrepreneurship)
```


The Fossil Fuel Inventory

Type Amount Location
Oil
1,278 BBOE 78\% E. Hemi.
Heavy Oil 608 BBOE 64\% W. Hemi.
(Tar Sands)
Bitumen 345 BBOE 88\% W. Hemi.
(Oil Shale)
Nat. Gas $\quad 1,239$ BBOE 77\% E. Hemi.
Coal $\quad 4,786$ BBOE Widely Dist.
(60\% in U.S., Russia, and China)
Global annual fossil fuel usage about 30 BBOE per year.

Source: en.wikipedia.org/wiki/Fossil_fuel

```
The Largest Economies and Oil, 2006
1. United States
2. Japan
3. Germany
4. China
5. United Kingdom
6. France
7. Italy 1.845
8. Canada 1.251
9. Spain 1.224
10. Brazi|* 1.068
11. Russia .987
12. India . }90
```


U.S. Oil Import Suppliers, 2007

1. Canada
2. Mexico
3. Saudi Arabia (OPEC)
4. Venezuela (OPEC)
5. Nigeria (OPEC)
6. Algeria (OPEC)
7. Iraq (OPEC)
8. Angola (OPEC)
9. Colombia
10. Kuwait (OPEC)

Source: Energy Information Administration

What would it take to replace gasoline made from imported oil?

To replace imports:
140 bil. gal. gasoline $\times 63 \%=88.2$ bil. gal.
$88.2 / .66=133.6 \mathrm{gal}$. ethanol $/ 2.7=49.5$ bil. bu. corn
2007 U.S. corn production $=13.2$ billion bu.
To replace OPEC imports:
140 bil. gal. $\times 63 \% \times 40 \%=35.3$ bil. gal. of gasoline 35.3/.66/2.7 = 19.8 bil. bu. of corn

Renewable Fuel Production Drivers

1. Energy Security
2. High Cost of Transportation Fuel
3. Post-peak Oil Shift to Alternative Energy

Growing Demand, Higher Price

Quantity

Supply Response to High Price Results in Lower Price

Price Effect of an Interruption in OPEC Oil Imports

Small Increase in Supply, Large Decrease in Price

Renewable Fuel Production Drivers
 1. Energy Security

2. High Cost of Transportation Fuel
3. Post-peak Oil Shift to Alternative Energy

U.S. Domestic Oil Production
 Source: U.S. Energy Information Agency

Sources of Total Renewable Energy Used, United States, 2006

- Biomass (Biofuels) 48
- Hydro 42
- Geothermal 5
- Wind 4
- Solar 1

2007 Sense of Congress Resolution - 25\% by 2025 Now 6\%.

Net Energy Balance

Product	Energy Out/Energy In
Gasoline	.81
Ethanol from grain	1.67
Ethanol from cellulose	2.00
Diesel	.83
Bio-diesel	3.2

Source: Congressional Research Service, RL32712, May 18, 2006

U.S. Ethanol Industry at a Glance

$2006 \quad 2007$

- Number of operating ethanol plants: 97134
- Plants under construction or expanding: 3576
- Announced plants: $300(17 \%) 100$ (?)
- Current production capacity: (BGPY) $4.8 \quad 7.3$
- Projected production capacity: 7.3 BGPY end of 2007
11.5 BGPY end of 2008
- Feedstock percentage:
Corn 97

Sorghum 2 Other 1

Ethanol Plant Economics

- Cost to build a 100 MGPY plant - $\$ 160$ million
- Purchase about 37-39 million bushels of corn (240,000 acres)
- Daily water use: 1.5 million gallons
- Natural gas expense - \$15 to \$25 million
- Payroll expense about $\$ 2$ million
- Distiller's Dried Grains income about \$35 million
- CO^{2} income about $\$ 4$ million
- Goal 30\% R.O.I.

Corn Usage Estimates (Millions of Bushels)

	USDA/WASDE $2006 / 07$	USDA/WASDE $2007 / 08$ est.
Feed and Residual	5,598	$5,6501(+1 \%)$
Food, Seed, and Industrial	1,371	$1,390^{2}(+1 \%)$
Ethanol for Fuel	2,117	$3,200(+51 \%)$
Net Exports	2,125	$2,450(+15 \%)$
Ending Stocks	1,304	$1,797(+38 \%)$
Total Usage	12,515	$14,487(+16 \%)$
Production	10,535	$13,168(+25 \%)$

Corn Starch Ethanol Production Projections (Billions of Gallons and Bushels)				
Eth. Pdn.	Conversion	Corn Usage	Corn Pdn. ${ }^{1}$	\% of Pdn.
20077.3	2.65	2.9	13.168	22.0
200811.5	2.72	4.2	12.717	33.0
200913.4	2.75	4.9	13.395	36.5
201014.0	2.77	5.1	13.953	36.6
2011 15.0²	2.80	5.4	14.359	37.6

${ }^{1}$ Assumes a 3.0 bushel per year increase in trend line yield and the commercialization of drought tolerant corn seed in 2009.
${ }^{2}$ Assumes the mandate for ethanol blending is increased to 15 billion gallons per year.

Switchgrass Costs, Popp and Hogan, University of Arkansas, 2007

- Production Cost $\approx \$ 25 /$ tn
(Assumed 12 year life of the stand; $\$ 200$ per year cost to establish and maintain the crop; zero yield first year, 3 tons per A. second year, 5 tons per A. years 3 through 12)
- Harvest Cost: bales $\approx \$ 39 /$ tn; modules $\approx \$ 46 /$ tn
- Transportation Cost:
bales - $\$ 4.50 /$ tn ($\$ 3.60 /$ loaded mile $\times 25$ mile haul)
modules - $\$ 3.70 /$ tn ($\$ 34$ per module plus $\$ 1.60 /$ loaded mile $\times 25 \mathrm{mi}$.)
- Other Considerations:
- 50 mil. Gal. plant would require 128 loads of bales per day or 196 modules; 45-60,000 truck loads per year
- bales would be handled up to four times before processing; must dispose of bale wrap at grinding; integrity of modules
- Assuming \$25 per ton profit for the producer, raw material cost for the ethanol plant would be $\$ 93.50$ to $\$ 99.70$ per dry ton

Corn vs. Cellulosic Ethanol

	Corn		Cellulosic
Capital cost per gallon	$\$ 1.60$	$\$ 5.00$ est.	
Raw mat. cost per ton	$\$ 120-160$	$\$ 94-100$	
Enzyme cost per ton	$\$ 3.15$	$\$ 33.00$	
Ethanol yield per dry ton	$100-110$	gal. $75-90$ gal.	
Conversion process	simple	complex	
Processing time, days	2	7	
Cost of prod. per gallon	$\$ 1.10$	$\$ 2.20$ est.	
Sources: Testimony of Keith Collins, USDA Chief Economist, 26 Aug. 2006; Popp and Hogan			
presentation at Farm Foundation Conference $12-13$ April 2007; and M. Woolverton calculations.			

Billion Ton Supply of Biomass, 2050

Findings:

$$
1,366 \text { mil. tons of biomass }
$$

428 mil. tons ag. crop residues
377 mil. tons perennial crops
368 mil. tons forest biomass
106 mil. tons process wastes
87 mil. tons grain

Source: Biomass as Feedstock for a Bioenergy and Bioproducts Industry: Technical Feasibility of a Billion Ton Annual Supply of Biomass. USDOE/USDA, April 2005

Critique of the Billion Ton Study

- Technical feasibility does not necessarily mean economic feasibility
- Underestimated increase in corn production
- Overestimated crop residue removal
- Overestimated the ability of energy crops to bid acres away from traditional crops
- Ignored weather related yield variability

Comparative Grain Prices, Dollars per Bushel

	Ave. ${ }^{1}$	Now 2
Wheat	$\$ 3.36$	$\$ 9.53$
Corn	2.27	4.20
Grain Sorghum	2.20	4.15
Soybeans	5.64	10.82

${ }^{1}$ Average price per bushel, 2000-2007.
${ }^{2}$ Kansas City cash truck bids, 13 December 2007.

Kansas Hay Prices, \$ Per Ton

Alfalfa

Horse: (sm sq) \$200

Dairy: (lg sq) mid-quality
Feedyard: ground, dlvd

Grass

Bluestem, burmuda, brome: (lg sq) 98
Sudan: (lg sq) 70
Mulch: (lg sq or rd¹) 50
Stover
Straw: (Iq sq) 49
Corn Stalks: (lq sq) 40
Milo Stalks: (lg sq) 33
Source: USDA, Kansas Hay Report, 14 Dec. 2007
${ }^{1}$ Large round bales usually sell for a $\$ 5$ per ton discount.

Land in Crops

(Millions of acres)

5 yr . Ave.	07/08USDA	Proj. 08/09
79.6	93.6	88.0 (-6\%)
74.2	63.7	70.0 (+10\%)

Corn
Soybeans
62.4
61.8
$61.8{ }_{(--)}$
Hay
Wheat 59.5
60.4
62.2 (+3\%)

Cotton 14.1 10.9 10.0 (-8\%)

Grain Sorghum
8.1
7.7 7.4 (-4\%)

Principle Crops
297.9
298.1
299.4

CRP $35.9 \quad 34.9$ (-3\%)

Total crop land in the United States - 441.6 million acres

Crop Acres Coming Out of CRP, 2007-2017, Millions of Acres

Source: USDA, FSA

Cellulosic Ethanol Conclusions

- High initial investment calls for economies of size, but the large tonnages required, logistical costs, and slow speed of processing will keep plant capacities small and unit cost of output high.
- Grain will provide the basic feedstock for ethanol plants supplemented by a cellulosic feedstock stream when available.
- Cellulosic industry development will require substantial federal subsidies and/or a strict usage mandate.

