

Technology for carbon measurements.

Veris, NIRS, and Soil Carbon

- Veris Technologies, Inc.
- Near Infrared Spectroscopy (NIRS) and soil C
- The challenges of measuring C for offset payments
- Results from a measurement case study
- Future issues

NIRS measurements of soil

Sudduth, K.A., Hummel, J.W., 1993. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Transactions of the ASAE, vol 36, pp. 1571-1582.

Chang, C.W., **Laird, D.A.**, Mausbach, M.J., Hurburgh, Jr., C.R., 2001. Near-infrared reflectance spectroscopy – principal components regression analysis of soil properties. Soil Science Society of America Journal 65, 480-490.

Reeves, J.B., McCarty, G.W., Meisinger, J.J., 1999. Near infrared reflectance spectroscopy for the analysis of agricultural soils. Journal of Near Infrared Spectroscopy 9 (1), 25-34.

Veris VIS-NIR Technology 'shank' model

Initial Customers: USDA-NSTL, Ames IA Louisiana State University, Baton Rouge LA Utah State University, Logan UT Washington State University, Pullman WA USDA-NSDL, Auburn AL University of Kentucky, Lexington KY Rodale Institute, Emmaus PA (2008)

Also Romania and Denmark research institutions

Veris VIS-NIR Technology In-field instrumentation

A)The first transform is used to calibrate the master instrument to the Avian reflectance standards. B) Then each slave instrument is given a master transform, which makes the data comparable to data taken on the master instrument. C) A system check transform using external references compensates for any instrument variation due to wear. This ensures that over time the instrument will give the same readings as it did when it was first built.

Veris VIS-NIR Technology Data processing and management:

Principle Components Analysis (PCA) compression of data

Clustering (fuzzy c-means algorithm) for soil sample locations

Partial least squares (PLS) regression for calibrating to a target soil property

Leave one out cross validation

Carbon varibiability at different spatial scales 0-15 cm hyd. cores			
	Std dev within	Std dev within 10m	% of field var. in
FIELD NAME	field (MgC/ha)	triangle (MgC/ha)	3 m triangles
Drummond	4.57	2.44	53%
Gypsum	8.71	6.07	70%
Kejr	10.18	1.72	17%
Lund CT	2.46	1.64	67%
Lund NT	3.08	2.36	77%
Markley	7.26	3.01	41%
Tam	5.25	2.29	44%
ALL 6 KS FIELDS	7.82	2.79	36%

					110% of	Expected C	90% of	Difference	% of expected
		Mean C	Std	90% conf	start of	(10% increase in	mean10	based on conf	C increase
	N	%	dev.	interval	sea	mean C)	vear sea	Interval	accounted for
Drummond	15	31.10	4.57	1.59	32.69	34.21	32.62	-0.06	-2%
Gvpsum	18	32.62	8.71	2.76	35.38	35.88	33.12	-2.26	-69%
Kejr	24	21.30	10.18	2.74	24.04	23.43	20.69	-3.35	-157%
Lund CT	15	29.55	2.46	0.85	30.40	32.51	31.65	1.25	42%
Lund NT	15	30.96	3.08	1.07	32.03	34.06	32.99	0.96	31%
Markley	18	25.30	7.26	2.28	27.58	27.83	25.55	-2.03	-80%
Tam	18	27.30	5.25	1.65	28.95	30.03	28.38	-0.57	-21%
	100	07.07	7.00	0.04	00.70	20.00	00.75	0.07	0.50/

Bulk Density varibiability at different spatial scales (0-15 cm hyd. cores)			
	Std dev within	Std dev within 10m	% of field var. in
FIELD NAME	field (g/c ³)	triangle (g/c3)	3 m triangles
Drummond	0.11	0.09	82%
Gypsum	0.11	0.09	82%
Kejr	0.16	0.10	63%
Lund CT	0.06	0.06	100%
Lund NT	0.08	0.08	100%
Markley	0.11	0.10	91%
Tarn	0.13	0.10	77%
Average 6 FIELDS	0.11	0.09	82%

	Ver	is VI	S-NIF	R resul	ts	
	%	CNIR S	SHANK			
Field	N	R²	RPD	RMSE	SD	
Gypsum	12	0.93	2.34	0.14	0.34	
Kejr	15	0.85	1.88	0.2	0.38	
Drummon	c 12	0.53	0.88	0.05	0.05	
Lund_CT	10	0.92	2.34	0.07	0.15	
Lund_NT	10	0.82	1.11	0.11	0.12	
Markley	14	0.91	1.69	0.11	0.19	
Tarn	12	0.92	1.83	0.08	0.15	
Gypun C%	Kejr C%	7 to 0.883 83 to 1.07		Lud CT (we	A) and NT (east)	
• 0.956 10 1.24 • 1.24 to 1.91	Markley C9 1.04 to 1.1 1.12 to 1.1 1.13 to 1.1	2 3 9		Tarn C% 0.939 to 1.13 1.13 to 1.21 1.21 to 1.39		1.1 to 1.15 1.15 to 1.17 1.17 to 1.24

Veris VIS-NIR results								
	SD Mg C ha from each stratification method							
Field	By NIR	By field	By soil type					
Drummond	3.74	4.57	4.57					
Gypsum	7.38	8.71	8.74					
Kejr	8.84	10.18	6.48					
Lund CT	1.80	2.46	2.6					
Lund NT	2.45	3.08	3.04					
Markley	3.77	7.26	5.82					
Tam	2.95	5.25	5.34					
Average	4.42	5.93	5.23					

Veris VIS-NIR results

Stratification Method	N	Mean C %	Std. dev.	90% conf interval	110% of mean– start of seq.	Expected C change 10 years (10% increase in mean C)	90% of mean–10 year seq.	Difference based on conf. Interval	% of expected C increase accounted for
All fields as one	123	27.87	7.82	0.91	28.78	30.66	29.75	0.97	35%
By field	123	27.87	5.93	0.68	28.55	30.66	29.97	1.418	51%
By USDA soil type	123	27.87	5.23	0.60	28.47	30.66	30.05	1.58	57%
By NIR zone (high-low)	123	27.87	4.42	0.51	28.38	30.66	30.15	1.77	63%

Veris VIS-NIR results							
Field	% Clab	NIR C-field					
Lund NT	1.305	1.303					
Lund CT	1.199	1.188					
All six fields	1.154	1.153					
Crete Crete Longford							
	Lund CT (v	vest) and NT (east)					
	● 0.728 to 1.17 ● 1.17 to 1.29 ● 1.29 to 1.9						

Future Considerations

Auditing a % of acres or measuring every acre?

Consider this hypothetical: if the price per acre of carbon offsets is \$10/yr, over a 10 yr contract the full payment could be as much as \$100. If validation choices are:

- 1. Auditing X% of acres--\$5/ac cost...50% discount of C
- 2. Measuring every acre--\$20/ac cost...20% discount of C

Scenario 1 nets C seller \$45/ac over 10 yrs. Scenario 2 nets C seller \$60/ac over 10 yrs.

Also, detailed C-N maps may help reduce NOX emissions; CSP and EQIP funds may be available to cover mapping costs.

Acknowledgement

Funding for NIRS research provided by the Small Business Innovation Research programs of the U.S. Departments of Agriculture and Energy